Reelin receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex.
نویسندگان
چکیده
In mammalian developing brain, neuronal migration is regulated by a variety of signaling cascades, including Reelin signaling. Reelin is a glycoprotein that is mainly secreted by Cajal-Retzius neurons in the marginal zone, playing essential roles in the formation of the layered neocortex via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). However, the precise mechanisms by which Reelin signaling controls the neuronal migration process remain unclear. To gain insight into how Reelin signaling controls individual migrating neurons, we generated monoclonal antibodies against ApoER2 and VLDLR and examined the localization of Reelin receptors in the developing mouse cerebral cortex. Immunohistochemical analyses revealed that VLDLR is localized to the distal portion of leading processes in the marginal zone (MZ), whereas ApoER2 is mainly localized to neuronal processes and the cell membranes of multipolar cells in the multipolar cell accumulation zone (MAZ). These different expression patterns may contribute to the distinct actions of Reelin on migrating neurons during both the early and late migratory stages in the developing cerebral cortex.
منابع مشابه
The Reelin Receptors Apoer2 and Vldlr Coordinate the Patterning of Purkinje Cell Topography in the Developing Mouse Cerebellum
The adult cerebellar cortex is comprised of reproducible arrays of transverse zones and parasagittal stripes of Purkinje cells. Adult stripes are created through the perinatal rostrocaudal dispersion of embryonic Purkinje cell clusters, triggered by signaling through the Reelin pathway. Reelin is secreted by neurons in the external granular layer and deep cerebellar nuclei and binds to two high...
متن کاملReelin, integrin and DAB1 interactions during embryonic cerebral cortical development.
Extracellular matrix-like molecule reelin and cell surface adhesion receptors such as alpha3beta1 integrin can regulate neuronal migration and position in the developing cerebral cortex. Here we show that alpha3beta1 integrin binds to the N-terminal region of reelin, a site distinct from the region of reelin shown to associate with other reelin receptors such as VLDLR/ApoER2. Furthermore, Dab1,...
متن کاملDivergent roles of ApoER2 and Vldlr in the migration of cortical neurons.
Reelin, its lipoprotein receptors [very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (ApoER2; also known as Lrp8)], and the cytoplasmic adaptor protein disabled 1 (Dab1) are important for the correct formation of layers in the cerebral cortex. Reeler mice lacking the reelin protein show altered radial neuronal migration resulting in an inversion of cortical layers. A...
متن کاملReeler/Disabled-like Disruption of Neuronal Migration in Knockout Mice Lacking the VLDL Receptor and ApoE Receptor 2
Layering of neurons in the cerebral cortex and cerebellum requires Reelin, an extracellular matrix protein, and mammalian Disabled (mDab1), a cytosolic protein that activates tyrosine kinases. Here, we report the requirement for two other proteins, cell surface receptors termed very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Both receptors can bind mDab1 ...
متن کاملReelin Binds α3β1 Integrin and Inhibits Neuronal Migration
1999), three mutant mice show a remarkably similar cellular phenotype, suggesting that the corresponding proteins represent a biochemical pathway that mediates Lori Dulabon,*‖ Eric C. Olson,†‖ Mary G. Taglienti,‡ Scott Eisenhuth,* Barbara McGrath,* Christopher A. Walsh,† proper formation of cerebral cortical lamination. In the Jordan A. Kreidberg,‡ and E. S. Anton*§# reeler mouse, the disorgani...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 523 3 شماره
صفحات -
تاریخ انتشار 2015